Search This Blog

Showing posts with label electromagnetism. Show all posts
Showing posts with label electromagnetism. Show all posts

Tuesday, August 30, 2011

magnetic properties of matter an introduction


  • All substances possess magnetic properties and most general definition of magnetism defines it as a particular form of interactions originating between moving electrically charged particles.
  • Magnetic interaction relates spatially separate material objects and it is transmitted by means of magnetic field about which we have already studied .This magnetic field is important characteristics of EM form of matter.
  • We already know that source of magnetic field is a moving electric charge i.e. an electric current. On atomic scale, there are two types of macroscopic current associated with electrons.
    a) Orbital current is which electron in an atom moves about the nucleus in closed paths constituting electric currents loops
    b) Spin currents related to the internal degrees of freedom of the motion of electrons and this can only be understood through quantum mechanics.
  • Like electrons in an atom, atomic nucleus may also have magnetic properties like magnetic moment but it is fairly smaller then that of electrons.
  • Magnetic moment m is nothing but the quantitative measure of the magnetism of a particle.
  • For an elementary closed loop with a current i in it, the magnitude |m| of a magnetic moment vector equals the current times the loop area S i.e.
    |m|=iS and direction of m can be determined using right hand rule.
  • All micro structural elements of matter electrons, protons and neutrons are elementary carriers of magnetic moment and combination of these can be principle sources of magnetism
  • Thus magnetic properties are inherent to all the substances i.e. they are all magnets
  • An external magnetic field has an influence on these atomic orbital and spin currents and two basic effects of an external field are observed
    i) First is diamagnetic effect which is consequences of faraday's law of induction. According to the Lenz law’s, a magnetic field always sets up an induced current with its magnetic field direction opposite to an initial field .Therefore diamagnetic moment created by the external field is always negative related to this field
    ii) Second effect occurs if there is a resultant non zero magnetic moment in the atom i.e. there is a spin magnetic moment and orbital magnetic moment .In this case external field will attempt to orient the intrinsic atomic magnetic moment in its own direction .As a result a positive moment parallel to the field is created and this is called paramagnetic moment.
  • Because of the universality of the diamagnetic effect, all substances possess diamagnetic.
  • However, diamagnetism is by no means actually observed in all matter. This is because in many instances the diamagnetic effect is masked by the more powerful paramagnetic effect.
  • Thus in paramagnetic substances we actually always observe a difference effect produced by the prominent Para magnetism and weaker diamagnetism.
  • Tuesday, February 15, 2011

    Electric and Magnetic fields

    CSIR NET and GATE physics
  • We will now discuss electric and magnetic field vectors (E and B)at a point in the absence of charge.
  • Now let us place a charge q at point (x,y,z) in space. If this charge experiences a force as given by Lorentz force equation then we can associate vectors E and B with this point (x,y,z) in space.
  • Thus at any time t vectors E(x,y,z,t) and B(x,y,z,t) gives forces experienced by any charge q at point (x,y,z) with a condition that placing this charge at point (x,y,z) in space does not disturb the position or motion of all other charges responsible for the generation of the field.
  • So, every point in space is associated with vector E and B which are functions of x,y,z and t.
  • Since E(or B) can be specified at every point in space , we call it a field.
  • A field is that physicsl quantity which takes on different values at different points in space for example velocity field of a flowing liquid.
  • Electromagnetic fields as we know are produced by complex formulas but the relationships between values of the fields at one point and the values of the feld at neighbour points are vary simple and can form differential equations which can completely describe the field.
  • To understand and visualize the behaviour of field we can consider the field as a function of position and
    time. We can also create a mental picture of field by drawing the vectors at many points in space each of which gives strength and direction of field at that point.
  • Flux is one property of field and flux of a vector field through a surface is defined as the average value of normal component of the vector times the area of the surface.
  • Another property is the circulation of the vector field and for any vector field circulation around any imagined closed curve is defined as the average tangential component of the vector multiplied by the circumfrance of the loop.
  • With just the idea of flux and circulation we can define all the laws of electricity and magnetism.
    Refrence:- The Feynman lectures on physics Vol 2


  • Related Posts Plugin for WordPress, Blogger...