Search This Blog

Friday, December 9, 2011

Fermi Energy

The Fermi temperature of Cu is about 80,000 K. Which of the following is most nearly equal to the average speed of a conduction electron in Cu?
A. $2\times{10^{-2}}$ m/s
B. $2$ m/s
C. $2\times{10^{2}}$ m/s
D. $2\times{10^{4}}$ m/s
E. $2\times{10^{6}}$ m/s
Solution:
Fermi Energy: $E_F=kT_F=\frac{1}{2}mv^2$
where
$k=$ Boltzmann's constant
$T_F=$ Fermi temperature
$m=$ mass of the particle
$v=$ speed of the particle
Since
$T_F =8\times{10^4}$ K
$k = 1.38\times{10^{-23}}$ Joule/K
$m_e = 9.11\times{10^{-31}}$ kg
($k$ and $m_e$ are provided by ETS in the problem sheet)
Therefore,
$v=\sqrt{\frac{2kT_F}{m_e}}$
$v=\sqrt{\frac{2\cdot1.38\cdot8}{9.11}\cdot\frac{10^{-23}\cdot10^4}{10^{-31}}}\approx{\sqrt{4\cdot{10^{12}}}}=2\cdot{10^{6}}$

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...