Search This Blog

Saturday, November 3, 2012

Equations of motion of coupled pendulum using the lagrangian method


Question
Obtain the equations of motion of coupled pendulum using the lagrangian method.
Solution
Consider a system of coupled pendulums as shown below in the figure

The displacement of A is \({x_1}\) and B is\({x_2}\) , condition being \({x_1}\) < \({x_2}\). In such state the spring gets stretched. The lengths of the strings of both the pendulums are same (say l). The angular displacement of A is \({\theta _1}\) and that of B is \({\theta _2}({\theta _2} > {\theta _1})\).
Therefore
\(\begin{array}{l}{x_1} = l{\theta _1} \Rightarrow {\theta _1} = \frac{{{x_1}}}{l}{\rm{                      (1)}}\\{x_2} = l{\theta _2} \Rightarrow {\theta _2} = \frac{{{x_2}}}{l}{\rm{                     (2)}}\end{array}\)
As the spring gets stretched, it is clear from the figure that restoring force works along the direction of displacement \({\theta _1}\) and opposite to the direction of displacement\({\theta _2}\) . Now A and B at zero potential level, the total potential energy of the system is given as
\(V = mgl(1 - \cos {\theta _1}) + mgl(1 - \cos {\theta _2}) + \frac{1}{2}k{({x_2} - {x_1})^2}\)
Where m is the mass of each one of the bob and k is the spring constant.
Since \({\theta _1}\)and \({\theta _2}\)are small so,
\(\begin{array}{l}\cos {\theta _1} = 1 - \frac{{\theta _1^2}}{2} + \frac{{\theta _1^4}}{4} + ......\\\cos {\theta _2} = 1 - \frac{{\theta _2^2}}{2} + \frac{{\theta _2^4}}{4} + ......\end{array}\)
Neglecting the higher powers other than squares of \({\theta _1}\)and \({\theta _2}\)the expression of potential energy can be written as
\(\begin{array}{l}V = mgl\frac{{\theta _1^2}}{2} + mgl\frac{{\theta _2^2}}{2} + \frac{1}{2}k{({x_2} - {x_1})^2}\\{\rm{    = }}\frac{{mgx_1^2}}{{2l}} + \frac{{mgx_2^2}}{{2l}} + \frac{1}{2}k{({x_2} - {x_1})^2}\end{array}\)
Also the kinetic energy of whole system is
\(T = \frac{1}{2}m\dot x_1^2 + \frac{1}{2}m\dot x_2^2 = \frac{1}{2}m(\dot x_1^2 + \dot x_2^2)\)
Hence Lagrangian L would be
\(\begin{array}{l}L = T - V\\L = \frac{1}{2}m(\dot x_1^2 + \dot x_2^2) - \frac{{mgx_1^2}}{{2l}} - \frac{{mgx_2^2}}{{2l}} - \frac{1}{2}k{({x_2} - {x_1})^2}\end{array}\)
Now
 \(\begin{array}{l}  \frac{\partial L}{\partial {{x}_{1}}}=-\frac{mg{{x}_{1}}}{l}+k({{x}_{2}}-{{x}_{1}}) \\\end{array}\)
\(\begin{array}{l}\frac{\partial L}{\partial {{{\dot{x}}}_{1}}}=m{{{\dot{x}}}_{1}} \\\end{array}\)
\(\begin{array}{l}\therefore \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{x}}}_{1}}} \right)=\frac{d}{dt}(m{{{\dot{x}}}_{1}})=m{{{\ddot{x}}}_{1}} \\\end{array}\)
Hence Lagrangian equation in terms of \({x_1}\)is
\(\begin{array}{l}\frac{d}{{dt}}\left( {\frac{{\partial L}}{{\partial {{\dot x}_1}}}} \right) - \frac{{\partial L}}{{\partial {x_1}}} = 0\\or,\\m{{\ddot x}_1} + \frac{{mg{x_1}}}{l} - k({x_2} - {x_1}) = 0\\or,\\m{{\ddot x}_1} =  - \frac{{mg{x_1}}}{l} + k({x_2} - {x_1})\end{array}\)
Also,
\(\begin{array}{l}\frac{{\partial L}}{{\partial {x_2}}} =  - \frac{{mg{x_2}}}{l} - k({x_2} - {x_1})\\\frac{{\partial L}}{{\partial {{\dot x}_2}}} = m{{\dot x}_2}\\and\\\frac{d}{{dt}}\left( {\frac{{\partial L}}{{\partial {{\dot x}_2}}}} \right) = m{{\ddot x}_2}\end{array}\)
Hence Lagrangian equation in terms of \({x_2}\)is
\(\begin{array}{l}\frac{d}{{dt}}\left( {\frac{{\partial L}}{{\partial {{\dot x}_2}}}} \right) - \frac{{\partial L}}{{\partial {x_2}}} = 0\\or,\\m{{\ddot x}_2} =  - \frac{{mg{x_2}}}{l} - k({x_2} - {x_1})\end{array}\)
The equation of motion for given system are
\(\begin{array}{l}m{{\ddot x}_1} =  - \frac{{mg{x_1}}}{l} + k({x_2} - {x_1})\\m{{\ddot x}_2} =  - \frac{{mg{x_2}}}{l} - k({x_2} - {x_1})\end{array}\)


No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...